

Multilevel SEM part 2

Random effects models

Today's goal:

Teach how to do multi-level SEM with random effects in Mplus (this stuff doesn't work in R)

Outline:

- Theory of random effects
- Multilevel SEM example in Mplus

Data from three participants: Adam, Brian, Chen

Fixed intercept + slope $Y_i = a + b_1 X_{diff} + e_i$ Assignment score

Data from three participants: Adam, Brian, Chen

Different intercept + fixed slope

$$Y_i = a + b_1 X_{diff} + b_2 X_{brian} + b_3 X_{chen} + e_i$$

Assignment score

Data from three participants: Adam, Brian, Chen

Different intercept + different slope

 $\begin{array}{l} Y_i = a + b_1 X_{diff} + b_2 X_{brian} + \\ b_3 X_{chen} + b_4 X_{diff} X_{brian} + \\ b_5 X_{diff} X_{chen} + e_i \end{array}$

Assignment score

Data from **many** participants

Random intercept + fixed slope

$$Y_{ip} = a_p + b_1 X_{diff} + e_{ip}$$

where $a_p = a + u_p$

for it (variance)

u_p differs per participant! we fit a single parameter

Data from **many** participants

Random intercept + random slope

$$Y_{ip} = a_p + b_{1p}X_{diff} + e_{ip}$$

where
$$a_p = a + u_p$$

and
$$b_{1p} = b_1 + v_p$$

Both u_p and v_p differ per participant!

Random effects in Mplus

Too complicated for lavaan

Dataset: f.dat

396 participants (level 2) each make disclosure decisions (binary) about 31 items (level 1)

Justifications (between subjects):

None

- Useful-for-you
- % of others
- Useful for others
- Explanation

5 justification types None Useful for you Number of others Useful for others Explanation

Variables at level 1:

- decision: whether the participant disclosed the item (1) or not (1)
- qid: question ID
- qcat: type of question (context or demographic)
- pos: position of the question (semi-randomized)
- perc: percentage used in the justification, centered around 50% (manipulated, only for types 2, 3 and 4)

Relevant variables at level 2:

- id: participant id
- message: the justification (manipulated)
- gord: order in in which questions are asked (manipulated)
- sat1-intent11: expected satisfaction with the system
- clear12–15: perceived decision support
- gipc16-21: privacy concerns

Relevant variables at level 2 (continued): collct22–27: collection concerns ctrl28–32: control concerns compny33–40: trust in the company providing the system threat41–46: perceived privacy threat

age

gender

What is the effect of the justification types, and does the percentage displayed in the justification play any role?

What is the effect of the justification types, and does the percentage displayed in the justification play any role?

Add decision on p cup csp ccp cwp

- Percentage is centered around 50 (to prevent multicollinearity), and divided by 45 (to reduce variance)
- Interaction effects with justification types
- Expectation: p and cap have no effect, cup csp and ccp will have a significant positive effect

Change **type = twolevel**

Add a **%between%** and **%within%** section in the model

- Cannot use wlsmv! Items will have to be treated as ratio...
- No real improvement here; the actual benefit comes from being able to run the next couple of models...

Remove the interaction effects (for now)

Add a random slope: **s | decision on p**

- This takes a pretty long time to estimate
- Shows us whether there is variations between participants in the effect of percentage (There should be! Why?)

Add: s on useful csocial ccombi cwhy

- This reintroduces the interaction effect!
- Slope is now predicted between subjects by condition
- Expectation: s on csocial is going to be significant
- Residual variance of s may no longer be significant

Add: **s on sat company threat clear control collect privacy**

Notes:

 Test whether the effect of percentage is also dependent on users' subjective perceptions (e.g. satisfaction, perceived threat, etc.)

"It is the mark of a truly intelligent person to be moved by statistics."

George Bernard Shaw